Articles

Wo gilt der Sinussatz?

Wo gilt der Sinussatz?

Der Sinussatz und der Kosinussatz sind zwei Erweiterungen der trigonometrischen Funktionen, die an sich ja nur in rechtwinkligen Dreiecken definiert sind, auf beliebige Dreiecke. Der “Trick” dabei ist in beiden Fällen, das Dreieck durch eine Höhe in zwei rechtwinklige Teildreiecke zu “teilen”.

Wie heißt der Sinussatz?

Sind zwei einander gegenüberliegende Größen gegeben, so kann zu einer dritten die gegenüberliegende Größe berechnet werden. Der Sinussatz gehört neben dem Kosinussatz zu den wichtigsten Sätzen der Trigonometrie. Da sin α=1, ist hc=b⋅sin α.

Wieso funktioniert der Sinussatz?

Wenn du also die Länge einer Seite durch den Sinus des gegenüberliegenden Winkels teilst, kommt immer das selbe Ergebnis heraus. Wenn in deinem Dreieck also mindestens drei Größen gegeben sind und ein „Seiten-Winkel-Paar“ dabei ist, kannst du den Sinussatz verwenden, um die anderen Größen zu berechnen.

Warum gilt der Sinussatz auch für Stumpfwinklige Dreiecke?

Sinussatz im stumpfwinkeligen Dreieck. gilt auch in stumpfwinkeigen Dreiecken. Im rechtwinkeligen Dreieck BDC (in dem die Seite a die Rolle der Hypotenuse spielt) ergibt sich sin β’ = hc/a, daher hc = a sin β’, wobei β’ = 180° − β.

Wann rechnet man mit dem Sinussatz?

Mit dem Sinussatz kannst du aus den Längen zweier Seiten und dem der längeren Seite gegenüberliegenden Winkel (Ssw) den anderen gegenüberliegenden Winkel berechnen.

Kann man den Sinussatz auch in nicht rechtwinkligen Dreiecken anwenden?

Bisher hast du mit Sinus, Kosinus und Tangens nur im rechtwinkligen Dreieck gerechnet. Aber es gibt eine Regel, mit der du mithilfe des Sinus in jedem Dreieck die Seitenlängen und Winkel berechnen kannst! Das ist der Sinussatz. Den kannst du dir sogar selbst herleiten.

Kann man den Sinussatz umstellen?

Man kann den Sinussatz auch umstellen und wie folgt schreiben: s i n ( α ) ⋅ b = s i n ( β ) ⋅ a sin(\alpha) \cdot b = sin(\beta) \cdot a sin(α)⋅b= sin(β)⋅a.

Wann kann der Sinussatz angewendet werden?

Der Sinussatz wird angewendet. wenn: 2 Seiten und 1 Winkel, der einer dieser beiden Seiten gegenüber liegt, gegeben sind, oder wenn. 2 Winkel und eine Seite, die einem der Winkel gegenüber liegt, gegeben sind.

Wann brauche ich den Sinussatz und wann den Kosinussatz?

Der Vorteil des Kosinussatzes ist, dass die Werte immer eindeutig sind. Man erhält für die Winkelberechnung einen Wert von 0° bis 180° . Beim Sinussatz hingegen erhält man stets einen Winkel von 0° bis 90° und muss das Ergebnis rechnerisch bzw. mit der gegebenen Zeichnung überprüfen.

Wie geht der Kosinussatz?

α und b liegen im linken Dreieck, a liegt im rechten, c ist die Summe jeweils einer Kathete beider Dreiecke. Die Idee ist nun, die beiden Dreiecke durch ihre gemeinsame Größe h rechnerisch zu “verbinden”, um mit den gegebenen Größen zur Größe a zu gelangen. Außerdem gilt: p = b · cos(α). Somit gilt: q = c – b · cos(α).

Wann nehme ich den Sinussatz und wann den Kosinussatz?

Wann rechnet man mit Sinus Cosinus oder Tangens?

Beziehungen trigonometrischer Funktionen

Sinus Kosinus Tangens
sin(180°+α)=−sin(α) cos(180°+α)=−cos(α) tan(180°+α)=tan(α)
sin(180°−α)=sin(α) cos(180°−α)=−cos(α) tan(180°−α)=−tan(α)
sin(360°−α)=−sin(α) cos(360°−α)=cos(α) tan(360°−α)=−tan(α)